Theme
11:16pm July 22, 2014

legs-are-just-for-show:

replaying the same level in a video game for the hundredth time

image

11:42am July 22, 2014

arcticfox7 replied to your video “Ten People. Two Teams. One Skype Call. Alt title: Fizz is a Cyber…”

well clearly I missed all the fun yesterday. But i would have been lagging like a mofo the entire game had I tried :

Nah bro, this was a little while back. Since I only post 1 league video a week, I sometimes have a backlog of footage… maybe I should upgrade to two videos a week O_O

11:40am July 22, 2014

 Zakahrum

A little bit of self-advertisement! If you guys sorta like watching my videos, y’all should go like my facebook page too. Sometimes I post extra funny stuff on there that you wont find here! :)

10:23am July 22, 2014

Also

I got to Silver III yesterday!

10:16am July 22, 2014

Ten People.

Two Teams.

One Skype Call.

Alt title: Fizz is a Cyber Bully >_<

——————————————————————

Music: “Made You Wicked -Instrumental-” by 2-Mello from his Mash-up Album, ‘Nastlevania’. Definitely go check out his work at http://www.2mello.com

——————————————————————

Don’t forget to like and subscribe!

2:25pm July 21, 2014
dailyleaguecomics:

The only nerfs lucian needs

dailyleaguecomics:

The only nerfs lucian needs

11:32am July 21, 2014

fuckyeahfluiddynamics:

Wingtip vortices are a result of the finite length of a wing. Airplanes generate lift by having low-pressure air travelling over the top of the wing and higher pressure air along the bottom. If the wing were infinite, the two flows would remain separate. Instead, the high-pressure air from under the wing sneaks around the wingtip to reach the lower pressure region. This creates the vorticity that trails behind the aircraft. I was first introduced to the concept of wingtip vortices in my junior year during introductory fluid dynamics. As I recall, the concept was utterly bizarre and so difficult to wrap our heads around that everyone, including the TA, had trouble figuring out which way the vortices were supposed to spin. A few good photos and videos would have helped, I’m sure. (Photo credits: U.S. Coast Guard, S. Morris, Nat. Geo/BBC2)

11:30am July 21, 2014

ericscissorhands:

"When super-villains want to scare each other, they tell Joker stories."

10:20am July 21, 2014

^ ^

I got complimented on my video editing yesterday!

10:02am July 21, 2014

My nipple just looked up Justin Timberlake on my smart phone on youtube and started playing it O_O

9:58am July 21, 2014

“…Cause my life is dope and I do dope shit.”

— Kanye West
8:53am July 21, 2014
trigonometry-is-my-bitch:

New material can twist light

Scientists at The Australian National University (ANU) have uncovered the secret to twisting light at will. It is the latest step in the development of photonics, the faster, more compact and less carbon-hungry successor to electronics.
A random find in the washing basket led the team to create the latest in a new breed of materials known as metamaterials. These artificial materials show extraordinary properties quite unlike natural materials.

"Our material can put a twist into light – that is, rotate its polarisation – orders of magnitude more strongly than natural materials," said lead author Mingkai Liu, a PhD student at the ANU Research School of Physics and Engineering (RSPE).

"And we can switch the effect on and off directly with light," said Mr Liu .

Electronics is estimated to account for two per cent of the global carbon footprint, a figure which photonics has the potential to reduce significantly. Already light carried by fibre optics, has replaced electricity for carrying signals over long distances. The next step is to develop photonic analogues of electronic computer chips, by actively controlling the properties of light, such as its polarisation.

The ability of a material to rotate polarisation, as in this experiment, springs from the asymmetry of a molecule. It occurs in natural minerals and substances; for example, sugar is asymmetric and so polarisation rotation can be used to measure sugar concentrations, which is useful in diabetes research.

However the remarkable properties of this artificial material might first be put to use in the budding photonics industry, suggests co-author Dr David Powell, also from RSPE.

"It’s another completely new tool in the toolbox for processing light," he says. "Thin slices of these materials can replace bulky collections of lenses and mirrors. This miniaturisation could lead to the creation of more compact opto-electronic devices, such as a light-based version of the electronic transistor."
The metamaterials are formed from a pattern of tiny metal shapes, dubbed meta-atoms. To obtain optical rotation Mr Liu and his colleagues used pairs of C-shaped meta-atoms, one suspended above the other by a fine wire. When light is shined on to the pair of meta-atoms the top one rotates, making the system asymmetric.
"The high responsiveness of the system comes because it is very easy to make something hanging rotate," says Mr Liu.
"The idea came to me when I found a piece of wire in my washing one day."
The fact that the team’s meta-atoms move when light shines on them adds a new dimension, he says.
"Because light affects the symmetry of our system, you can tune your material’s response simply by shining a light beam on it. Tunability of a metamaterial is an important step towards building devices based on these artificial materials," he says.

source

trigonometry-is-my-bitch:

New material can twist light

Scientists at The Australian National University (ANU) have uncovered the secret to twisting light at will. It is the latest step in the development of photonics, the faster, more compact and less carbon-hungry successor to electronics.

A random find in the washing basket led the team to create the latest in a new breed of materials known as metamaterials. These artificial materials show extraordinary properties quite unlike natural materials.

"Our material can put a twist into light – that is, rotate its polarisation – orders of magnitude more strongly than natural materials," said lead author Mingkai Liu, a PhD student at the ANU Research School of Physics and Engineering (RSPE).

"And we can switch the effect on and off directly with light," said Mr Liu .

Electronics is estimated to account for two per cent of the global carbon footprint, a figure which photonics has the potential to reduce significantly. Already light carried by fibre optics, has replaced electricity for carrying signals over long distances. The next step is to develop photonic analogues of electronic computer chips, by actively controlling the properties of light, such as its polarisation.

The ability of a material to rotate polarisation, as in this experiment, springs from the asymmetry of a molecule. It occurs in natural minerals and substances; for example, sugar is asymmetric and so polarisation rotation can be used to measure sugar concentrations, which is useful in diabetes research.

However the remarkable properties of this artificial material might first be put to use in the budding photonics industry, suggests co-author Dr David Powell, also from RSPE.

"It’s another completely new tool in the toolbox for processing light," he says. "Thin slices of these materials can replace bulky collections of lenses and mirrors. This miniaturisation could lead to the creation of more compact opto-electronic devices, such as a light-based version of the electronic transistor."

The metamaterials are formed from a pattern of tiny metal shapes, dubbed meta-atoms. To obtain optical rotation Mr Liu and his colleagues used pairs of C-shaped meta-atoms, one suspended above the other by a fine wire. When light is shined on to the pair of meta-atoms the top one rotates, making the system asymmetric.

"The high responsiveness of the system comes because it is very easy to make something hanging rotate," says Mr Liu.

"The idea came to me when I found a piece of wire in my washing one day."

The fact that the team’s meta-atoms move when light shines on them adds a new dimension, he says.

"Because light affects the symmetry of our system, you can tune your material’s response simply by shining a light beam on it. Tunability of a metamaterial is an important step towards building devices based on these artificial materials," he says.

source

8:51am July 21, 2014
e-bae:

If iphones are so good why did cell need the androids to become perfect?

e-bae:

If iphones are so good why did cell need the androids to become perfect?

2:25pm July 20, 2014

lorca-the-great:

After not winning anything at the cosplay pagent at GaymerX2 (bullshit) I undertook the task of putting my Garrett cosplay on my mannequin.

So HERE have some epic detail shots!

2:19pm July 20, 2014
firelorcl:

vortexanomaly:

the crumb

this is the most intense photo i’ve ever seen

firelorcl:

vortexanomaly:

the crumb

this is the most intense photo i’ve ever seen